
Confidential
Workload
Governance

August 2025

Context
When implementing code to run as a Confidential Workload,
the application developer is faced with a set of concerns around
the additional security properties that Confidential Computing
would deliver. It may not be sufficient to run a Confidential
Workload inside a TEE, even coupled with Remote Attestation,
as all desired Confidential Computing-related requirements
may not be automatically met. A properly governed Confidential
Workload must be subjected to a set of Confidential Computing-
specific Control Objectives in order to satisfy the requirements
of each Persona [1].

Problem
Trusted Execution Environments by themselves deliver only
some of the properties needed to keep code and data properly
safeguarded while in-use. These default properties include
isolation from the hosting environment and the ability to
perform Remote Attestation, as well as other platform-level
functions such secure random number generation and sealing
data to the platform. These facilities, while essential, are only
a subset of the requirements for secure Confidential Workload
execution. Code not developed specifically for execution inside
TEEs may not fully protect data in use even when run inside a
TEE. Moreover, it is generally not sufficient to develop the code
itself with Confidential Computing-specific features in mind:
additional non-trivial considerations apply to the build chains
and deployment processes.

1

Forces
Vulnerabilities may be present in deployed code due to a wide
variety of factors. Some relate to the code development itself.
However, even the most perfectly written code may still be vulner-
able due to supply chain, build tooling, and deployment issues.
These are all covered in this section.

In total, there are four main areas of concern for secure
Confidential Workload governance:

1. Secure Code Design & Development: Code written in tradi-
tional ways for a non-confidential environment and then
naïvely executed as-is inside a TEE may contain security
vulnerabilities that would weaken the protections offered
by Confidential Computing. Some relevant potential vulner-
abilities in this context include:

• Information leakage and tampering due to unsecured
incoming and outgoing data — such as network,
storage, logs, environment/configuration, and metrics.

• Use of a poor source of entropy in generation of
random numbers leading to inadequate randomness
in cryptographic operations.

• Issuing bearer tokens leading to the tokens being leaked
(e.g., by some relying party), allowing any attacker in
possession of the leaked tokens to impersonate the
identity of the code that the tokens represent. This
attack is not prevented by the use of Confidential
Computing code running in a TEE, and secrets that are
only supposed to be made available to the TEE are no
more protected from bearer token leaks than code
running outside TEEs.

2. Secure Code Build

• Code compilation is sabotaged by a malicious actor,
including by tampering with compilation settings,
making unauthorized code changes preceding
compilation, or modifying the compiler output.

3. Secure Supply Chain

• The build tools themselves may be vulnerable or
actively malicious.

• Vulnerabilities already present in or maliciously
inserted into dependencies, for example, open-source
libraries or compiled artifacts introduced during the
build process.

4. Secure Packaging, Integration, Configuration and
Deployment: The final class of issues that should concern
owners of data entrusted to Confidential Workloads
relates to the configuration and environment settings
during execution:

• Unnecessarily large TCBs: Lift-and-shift of an
unmodified code execution environment such as a
VM may be less secure than repartitioned workloads
that explicitly minimize the trusted computing base for
sensitive operations.

• Security-sensitive configuration: As one example,
trusted roots are essential for establishing and
verifying secure communication across systems and
applications, and certificate signature integrity and
authenticity are fundamental to secure operation and
infrastructure trust. Polluted root certificate stores can
cause the Workload to trust the wrong entities, e.g.,
terminating TLS connections with the wrong parties
or trusting the wrong signatures. As another example,

2CONFIDENTIAL WORKLOAD GOVERNANCE
CONFIDENTIAL COMPUTING
CONSORTIUM

misconfiguration of cryptographic parameters, such as
poor choices of ciphers, key lengths, and modes may
introduce vulnerabilities into exchanged data flows.

• Verifier Hygiene: The Verifier policies* may allow older,
vulnerable versions of the code to continue being
treated as valid**

Solution
The terms MUST/SHOULD/MAY etc. below are used in accordance
with [2]. Every SHOULD recommendation is explained separately
in the “SHOULD vs. MUST Clarifications” section towards the end
of this document.

For each of the main concern areas listed in the Forces section
above, the proposed solution is listed below:

• Secure Code Design & Development

• Encryption of all data in transit and at rest: The
code SHOULD [a] be implemented to safeguard all
data exchanges with the outside world (e.g., network,
storage, and peripherals such as Graphics Processing
Units and smart NICs) to prevent information leakage/
tampering, and cryptographic keys MUST be securely
generated/procured/provisioned for all such operations.
Data flows that may leak sensitive information to
attackers include parameters passed to APIs exposed by
the TEE as well as their corresponding return values.

• Secure RNG: The platform RNG (functionality available
to code executing within TEEs via a special platform API)
MUST be used for all secure random number generation
within TEEs.

• Check all outputs for data leaks: The developer MUST
reassess the trust relationship that code running confi
dentially has with its counterparties; for instance, this may
include ensuring that generated logs and metrics do not
leak information that cannot be exposed to unauthorized
parties and all cached data is sealed to the platform.

• Secure data exchange with smart accelerators such as
GPUs, NICs, local storage, etc.: Any device or accelerator
that handles decrypted data MUST be considered part
of the TCB. The implementation MUST only pass data
to attested accelerators which themselves implement
a TEE. The implementation MUST establish a secure
channel through device attestation. All other uses of
devices should treat the device as an untrusted pass-
through and use end-to-end encryption with another
trusted endpoint.

• Use secure credentials: design SHOULD [b] avoid
reliance on bearer tokens in authentication protocols.

• Secure & Attestable Build Environment

• Establish, Maintain and Produce Evidence of Integrity
and Authenticity of the Build Tools and Environment:

• Secure and Isolated Build Practices: The build process
SHOULD [c] incorporate integrity and authenticity
checks and strongly isolated compilation processes to
prevent malicious tampering. The SLSA [3] Build track
describes specific practices to enhance build process
integrity. The build environment SHOULD [d] be
integrity checked to detect tampering in the underlying
compute system prior to running a build pipeline;
the future SLSA Build Environment track will define
specific practices to achieve this, including the use of
Confidential Computing (CC). CC or alternative data-

3CONFIDENTIAL WORKLOAD GOVERNANCE
CONFIDENTIAL COMPUTING
CONSORTIUM

* Verifier policies as used in
this document is a shorthand
for Endorsements, Reference
Values and Appraisal Policy for
Evidence in RATS [5] parlance.
↩
** Blue-green deployments
may allow both newer
and older versions; this is
covered under the “Workload
Upgrades” pattern [6]. ↩

https://slsa.dev/spec/v1.0/levels#build-track
https://slsa.dev/spec/draft/future-directions#build-environment-track

in-use protection technology SHOULD be used to
safeguard a build environment at runtime.

• Secure and Documented Build Tool Settings:
The build process MUST use recommended build
tool settings as well as up-to-date versions of tools
and dependencies. The configuration, inputs and
outputs of the build process SHOULD be documented
(e.g., via SLSA Provenance) and authenticated using a
framework such as in-toto [4]. Failure to do either can
lead to the generation of vulnerable executable code
and make it more difficult to determine the integrity
and trustworthiness of the produced code.

• Reproducible Builds: Builds SHOULD [e] be reproducible
to ensure that the built binaries can be independently
verified to match the source code. This approach
provides additional measures for detecting tampering or
unintended modifications during the build process.

• Secure and Attested Supply Chain Management

• Automated tools MUST be used to continuously
monitor and manage third-party software libraries and
dependencies for known vulnerabilities. Dependencies
MUST be kept updated and strict vetting processes
applied, including code signature and build metadata
checks if available, when ingesting dependencies.
Dependency management MUST continue for the
duration of the application’s deployment.

• Include Bills of Materials as part of generated software;
the BOMs SHOULD [f] be verified by the Verifier post-
deployment.

• Secure Integration, Configuration and Deployment

• Minimizing the Workload TCB: Care MUST be taken to
include only the minimum amount of code in each TEE
that is necessary for the functionality encapsulated by
that TEE.

• Trusted Root Store Hygiene: The contents of the Root
Stores, if any, used by the Confidential Workload, MUST
be carefully curated and safeguarded against tampering.
If used as a configuration parameter (as opposed to
being hard-coded into the Workload), the Trusted Root
Store measurement MUST be included in the remote
attestation process.

• Cryptography Hygiene: The choice of cryptographic
ciphers, key lengths and modes MUST be carefully
curated and safeguarded against tampering. If confi
gurable (as opposed to being hard-coded into the
Workload), these choices MUST be included in the
remote attestation process.

• Cryptographic Key Hygiene: All cryptographic keys
procured from external Key Vaults MUST only be released
to properly authorized requesting TEEs, usually based
on the results of successful Remote Attestation and
delivered to the requesting TEEs using a secure transport.

• Security-Sensitive Configuration Hygiene: All security-
sensitive configuration MUST be included in the remote
attestation process.

• Verifier Hygiene: The Verifier policies MUST match the
most recent versions of deployed Workloads; older vulner
able Workloads MUST be phased out in a timely fashion
following successful deployment of up-to-date versions.

4CONFIDENTIAL WORKLOAD GOVERNANCE
CONFIDENTIAL COMPUTING
CONSORTIUM

Governance Expectations Summary
The numbers in the left column below refer to [1]. Rows listed as N/A indicate that corresponding expectations are listed under different
Patterns documents.

DESCRIPTION

2–6, 8, 10–11, 13 N/A

1 Supply accurate and up-to-date component-specific guidance for secure software development.

7 Update Verifier policies with the Reference Values of newly deployed packages.

9, 14 Evidence of establishment of and adherence to secure design & development practices Evidence of securely
managed build environment Evidence of robust supply chain and dependency management Evidence of
secure integration, configuration and deployment practices.

12 Provide evidence of measurements of newly deployed packages being recognized as valid.

15 Evidence of requiring and validating that expectations set out in (9, 14) are satisfied.

“SHOULD” vs. “MUST” Clarifications
a. Extreme care must be taken to ensure that the inputs and

outputs of computations, whether sent over the network
or to/from storage, are properly secured against tampering
and disclosure. Failure to follow this recommendation can
have a severe impact on the security of the application and
its consumers.

b. Failure to bind tokens to the TEE may cause them to be
leaked, undermining the security of a relying party for
which they are intended.

c. Failure to secure the build environment may cause vulner-
abilities to be introduced into the compiled/generated

artifacts and open additional avenues to attack that
running these artifacts inside a TEE would be unable to
mitigate.

d. If the build tools themselves are not running inside TEEs,
other compensating controls, such as physical security or
strongly segregated environments, should be considered.

e. Non-reproducible builds make it more difficult to ensure
and subsequently prove that the inputs into the build
process map exactly to the outputs, thus requiring
compensating controls such as cryptographic signing and
timestamping of generated artifacts.

5CONFIDENTIAL WORKLOAD GOVERNANCE
CONFIDENTIAL COMPUTING
CONSORTIUM

f. Failure to check the BOMs of Attesters by the Verifier may
create situations where Workloads containing newly discov-
ered vulnerabilities, that could be discovered by cross-
checking BOMs against known vulnerabilities, continue to
attest successfully.

References
1. Expectations of Ecosystem Participants:

./Expectations of Ecosystem Participants

2. Key Words for Use in RFCs to Indicate Requirement Levels:
https://datatracker.ietf.org/doc/rfc2119/

3. Supply-chain Levels for Software Artifacts (SLSA)
https://slsa.dev

4. In-Toto Attestation Framework
https://github.com/in-toto/attestation

5. Remote Attestation Procedures (RATS) Architecture RFC:
https://datatracker.ietf.org/doc/rfc9334/

6. Confidential Workload Upgrade Governance Pattern:
https://github.com/confidential-computing/gover-
nance/blob/main/SIGs/GRC/publications/Confidential_
Workload_Upgrade_Governance.md

7. Confidential Computing Glossary:
https://github.com/confidential-computing/glossary/

8. NIST SP 800-204D “Strategies for the Integration of Software
Supply Chain Security in DevSecOps CI/CD Pipelines”:
https://csrc.nist.gov/pubs/sp/800/204/d/final

9. Picture of likely Workload slices on various hardware
architectures: https://github.com/confidential-computing/
governance/blob/main/terminology/Full-Table.jpg

6CONFIDENTIAL WORKLOAD GOVERNANCE

https://github.com/haitaohuang/governance/blob/pub/SIGs/GRC/publications/Expectations_of_Ecosystem_Participants.md
https://datatracker.ietf.org/doc/rfc2119/
https://slsa.dev
https://github.com/in-toto/attestation
https://datatracker.ietf.org/doc/rfc9334/
https://github.com/confidential-computing/governance/blob/main/SIGs/GRC/publications/Confidential_Workload_Upgrade_Governance.md
https://github.com/confidential-computing/governance/blob/main/SIGs/GRC/publications/Confidential_Workload_Upgrade_Governance.md
https://github.com/confidential-computing/governance/blob/main/SIGs/GRC/publications/Confidential_Workload_Upgrade_Governance.md
https://github.com/confidential-computing/glossary/
https://csrc.nist.gov/pubs/sp/800/204/d/final
https://github.com/confidential-computing/governance/blob/main/terminology/Full-Table.jpg
https://github.com/confidential-computing/governance/blob/main/terminology/Full-Table.jpg

