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1 Introduction

In classical computing, data exists in three states: in transit, at rest, and in use. Data traversing the network 
is “in transit,” data in storage is “at rest,” and data being processed is “in use.” In a world where we are 
constantly storing, consuming, and sharing sensitive data - from credit card data to medical records, from  
firewall configurations to our geolocation data - protecting sensitive data in all of its states is more critical  
than ever. Cryptography is now commonly deployed to provide both data confidentiality (stopping unauthorized  
viewing) and data integrity (preventing or detecting unauthorized changes). While techniques to protect data in 
transit and at rest are now commonly deployed, the third state - protecting data in use - is the new frontier.

A Confidential Computing Consortium whitepaper[1] provides an overview of how Confidential Computing 
addresses this problem, along with use cases and motivation. This paper provides more details for a 
technical audience.
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2 Confidential Computing

2.1 Definition
Confidential Computing is the protection of data in use by performing computation in a hardware-based, 
attested Trusted Execution Environment. (See Section 3 for the definition of a Trusted Execution 
Environment.)

Importantly, the definition is not limited to “cloud” uses, but can be applied anywhere including public cloud 
servers, on-premises servers, gateways, IoT devices, Edge deployments, user devices, etc. It is also not 
limited to such trusted execution being done by any particular processor, since trusted processing might 
also be in various other places such as a GPU or a network interface card. Neither is it limited to solutions 
that use encryption, though this is the most common technique employed.

Conversely, confidential computing is not the only technique in the space of protecting data in use. A 
comparison with other approaches is covered in section 5.

2.2 Why is Hardware Necessary for Confidential 
Computing
Security is only as strong as the layers below it, since security in any layer of the compute stack could potentially  
be circumvented by a breach at an underlying layer. This drives the need for security solutions at the lowest  
layers possible, down to the silicon components of the hardware. By providing security though the lowest 
layers of hardware, with a minimum of dependencies, it is possible to remove the operating system and device 
driver vendors, platform and peripheral vendors, and service providers and their admins, from the list of  
required trusted parties, thereby reducing exposure to potential compromise at any point in the system lifecycle.

With the goal of decreasing the reliance on proprietary software for confidential computing environments, 
the Confidential Computing Consortium has excluded from its scope TEEs that have only software roots of 
trust and focused on hardware-based security guarantees for confidential computing environments. 
Another Confidential Computing Consortium (CCC) whitepaper[6] provides more discussion of the uses of 
confidential computing and the scope of the CCC. 
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3 Trusted Execution Environments 
(TEEs)

3.1 Properties
A Trusted Execution Environment (TEE) is defined by the CCC, following common industry practice, as an 
environment that provides a level of assurance of the following three properties:

•	 Data confidentiality: Unauthorized entities cannot view data while it is in use within the TEE. 

•	 Data integrity: Unauthorized entities cannot add, remove, or alter data while it is in use within the TEE. 

•	 Code integrity: Unauthorized entities cannot add, remove, or alter code executing in the TEE.

In the context of confidential computing, unauthorized entities could include other applications on 
the host, the host operating system and hypervisor, system administrators, service providers, and the 
infrastructure owner—or anyone else with physical access to the hardware. 

Together, these attributes provide not only an assurance that the data is kept confidential, but also that 
the computations performed are actually the correct computations, allowing one to trust the results of the 
computation as well.

Depending on the particulars of a specific TEE, it may also provide:

•	 Code Confidentiality: In addition to protecting data, some TEEs may protect code while in use from 
being viewed by unauthorized entities. For example, this can protect an algorithm that is considered to 
be sensitive intellectual property.

•	 Authenticated Launch: Some TEEs may enforce authorization or authentication checks prior to  
launching a requested process and may refuse to launch a process that is not authorized or authenticated.

•	 Programmability: Some TEEs may be programmed with arbitrary code, while some may only support 
a limited set of operations. A TEE might even include or be composed entirely of code fixed at the time 
of manufacture.

•	 Attestability: Often, a TEE can provide evidence or measurements of its origin and current state, 
so that the evidence can be verified by another party and—programmatically or manually—it can 
decide whether to trust code running in the TEE. It is typically important that such evidence is signed 
by hardware that can be vouched for by a manufacturer, so that the party checking the evidence 
has strong assurances that it was not generated by malware or other unauthorized parties. (Further 
discussion on attestation is provided later in section 7.)

•	 Recoverability: Some TEEs may provide a mechanism for recovery from a non-compliant or potentially 
compromised state. For example, if it is determined that a firmware or software component no longer 
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meets compliance requirements and the launch authentication mechanism fails, it may be possible 
to update that component and retry (recover) the launch. Recoverability generally requires that 
some component(s) of the TEE remain trusted, which can act as a “root” when other components are 
updated. (Further discussion on such recovery is provided later in section 7.)

A hardware-based TEE uses hardware-backed techniques to provide increased security guarantees for 
the execution of code and protection of data within that environment. This assurance is often missing in 
approaches that do not use a hardware-based TEE.

For more discussion of TEE definitions used in the industry, see the discussion at [6].
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4 Related Technologies

The TAC conducted a survey of various terms in the industry related to protecting data in use, and 
composed the following Venn diagram of technologies:

Figure 1 - Venn diagram of various technologies used to protect data in use

 
Unfortunately, unlike the term “confidential computing”, several of the terms used in the diagram have 
multiple competing definitions. For example, “privacy-preserving computation” is variously defined 
as being synonymous with multi-party computation, or covering both multi-party computation and 
homomorphic encryption, or even (e.g., in [2]) covering the entire space of protecting data in use.

This diagram illustrates why we refer to confidential computing as protecting data in use by using a 
hardware-based TEE, to distinguish it from other techniques.
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4.1 Security Comparisons
The following table compares a typical TEE implementation with typical implementations of two other 
emerging classes of solution that protect data in use, Homomorphic Encryption (HE) and Trusted Platform 
Modules (TPM).

HW TEE Homomorphic Encryption TPM

Data integrity Y Y (subject to code integrity) Keys only
Data confidentiality Y Y Keys only
Code integrity Y No Y
Code confidentiality Y (may require work) No Y
Authenticated Launch Varies No No
Programmability Y Partial (“circuits”) No
Attestability Y No Y
Recoverability Y No Y

Table 1 - comparison of security properties of Confidential Computing vs. HE and TPMs

 
In practice, the extent to which the properties are present can vary by vendor, model, and algorithm and so 
the values of cells above are typical examples, but the first three properties highlight the key differences 
in security properties. For example, a typical TPM protects keys, and signs or encrypts data with those 
keys, but by itself cannot guarantee that the data presented to it is correct. A TPM is not programmable 
with arbitrary code, whereas a TEE is programmable and protects that code and its data. A typical 
homomorphic encryption algorithm can protect arbitrary data, but by itself cannot ensure that the correct 
operations have been done and that the code has not been tampered with, whereas a TEE again protects 
both the data and the code. These techniques are often complementary and can even be used together in 
solutions for stronger security.

4.2 Scalability Comparisons
The following table shows how scalability in various metrics compares between classical computing, 
computing using a typical hardware-based TEE, and Homomorphic Encryption. As with the security 
comparison, the actual answers may vary by vendor, model, or algorithm.

Native HW Tee Homomorphic Encryption
Data size limits High Medium Low
Computation Speed High High-Medium Low
Scale out across 
machines Yes More work Yes

Ability to combine data 
across sets (MPC) Yes Yes Very limited

Table 2 - comparison of scalability properties of Confidential Computing vs. HE and TPMs

 
While combining techniques can increase security, such combinations generally lower performance and scalability.

https://homomorphicencryption.org/
https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/
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5 Threat Model

5.1 Goal
Confidential Computing aims to reduce the ability for the owner/operator/pwner of a platform to access 
data and code inside TEEs sufficiently such that this path is not an economically or logically viable attack 
during execution. Use of the phrase “economically or logically viable” makes assumptions, of course, about  
the types of attackers considered: there are some attackers where such considerations may be weighted 
differently from others, including nation state actors and some academic institutions. There is an associated  
recognition that there is no “absolute security”, but TEEs can raise the bar significantly over other 
techniques available for protecting data in use, by various measures beyond confidentiality and integrity 
protection, including usability and cost. This improvement allows designers, implementers and operators 
of systems managing sensitive data and algorithms to concentrate on other aspects of the system.

The focus on data protection during execution is important, as Confidential Computing is concerned with 
data in use. There may be attacks associated with storage and transport (data at rest and data in transit, 
respectively) which, though relevant to any systems making use of TEEs, are not directly associated with the 
protections that TEEs provide. Some of these may be in scope of Confidential Computing, including:

•	 Attestation of TEEs and TEE environments to ensure valid and correct deployment;

•	 Transport of workloads and data to TEE environments;

•	 Storage of data associated with TEE environments outside the TEE instance;

•	 Migration of workloads between TEE environments.

In some cases, those deploying workloads into TEE environments may have varying levels of trust in 
the owner of the system hosting the workload, and this trust may change over time. Such changes may 
be based on factors such as the relationship with the owner or operator of the host, the software and 
hardware it comprises, and the likelihood of physical, software, or social engineering compromise. This is 
appropriate, and Confidential Computing frameworks and projects may embrace differing trust models 
with relation to the host, its owner, its operator, and any other actors.

There are many ways for actors in the ecosystem who rely on the security guarantees of a TEE to establish 
trust in the TEE. One approach is to obtain assurance of security statements about products through 
assessment by third-party evaluation laboratories. Other approaches include basing assurances on 
security statements from specific vendors; community or other audit of open source components in 
hardware, firmware, and/or software; and assessment or certification by industry or standards bodies.
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5.2 Threat Vectors
There are various vectors by which attacks may exploit vulnerabilities in a system: Confidential Computing, 
as noted above, does not attempt to address all of them. It is worth providing a description, if not a formal  
definition, of various threat vectors that are considered in-scope and out-of-scope for Confidential Computing.

It should be noted that while some types of in-scope threat vectors can generally be expected to be 
mitigated by Confidential Computing techniques, there is a set of threat vectors for which the extent of 
mitigations will vary significantly based on the silicon implementation, and there may be some “grey areas” 
that may be considered in-scope by some vendors, and out-of-scope by others. This is particularly true in 
areas such as integrity, rollback, and replay attacks.

5.2.1 In-Scope

The following threat vectors are considered to be in-scope for Confidential Computing:

•	 Software attacks: these include attacks on the software and firmware installed on the host, including the 
operating system, hypervisor, BIOS, other software and stacks, and workloads associated with any party. 

•	 Protocol attacks: these include attacks on protocols associated with attestation as well as workload 
and data transport. Any attack that could compromise the attestation of a TEE instance could lead to a  
workload or data being compromised in turn. Equally, even if the attestation protocol is not compromised,  
a vulnerability in the provisioning or placement of the workload and/or data could cause a 
compromise.

•	 Cryptographic attacks: cryptography is an evolving discipline, with vulnerabilities being found over 
time in ciphers and algorithms due to a number of factors, including mathematical breakthroughs, 
availability of computing power and new computing approaches such as quantum computing. Where 
possible, the principle of crypto-agility should be espoused, allowing deprecated cryptographic 
primitives to be replaced with newer versions, or approaches better suited to a particular environment. 
While this is possible in software and firmware components of TEEs, it is generally impractical in 
hardware. In some cases, defense-in-depth may be appropriate, for instance employing quantum-
resistant cryptography within TEE instances whose implementation is not, itself, quantum-resistant, 
but careful consideration needs to be made by qualified persons before assuming that this will provide 
protection appropriate to any particular use case.

•	 Basic physical attacks: while long-term intrusive attacks on the CPU are considered out-of-scope 
(see below), other attacks are considered in-scope, including cold DRAM extraction, bus and cache 
monitoring and plugging of attack devices into an existing port, e.g., PCIe, Firewire, USB-C.

•	 Basic upstream supply-chain attacks: though attacks performed in the supply-chain on TEE 
components are out-of-scope (see below), attacks that would compromise them through “gross” 
changes such as adding debugging ports are considered to be in scope.

The Confidential Computing Consortium also believes that there exist opportunities to provide guidance to  
those designing, implementing and operating workloads around which types of applications which may be  
more vulnerable to attacks than others, and also issues around lifecycle management to help mitigate attacks.
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5.2.2 Out-of-Scope

Threat vectors which are generally considered to be out-of-scope for Confidential Computing include:

•	 Sophisticated physical attacks: these are physical attacks that typically require long-term and/or 
invasive access to hardware, including chip scraping techniques and electron microscope probes.

•	 Upstream hardware supply-chain attacks: these exclude attacks on components of a host system 
that is not directly providing TEE capabilities, but do include attacks on, for instance, a CPU. Examples 
include attacks at chip manufacturing time and attacks at key injection/generation time.

•	 Availability attacks (such as DoS or DDoS) attacks: not addressed by current hardware-based TEEs 
as part of their threat model. Software projects and service providers may provide mitigations to such 
attacks. (Further discussion of the threat model is provided in section 5.)

5.3 Side-Channels

5.3.1 Background

TEEs provide a level of assurance for data confidentiality as per the threat model goal described in 
section 5.1. However, this assurance rests on some assumptions, a key one being that there are no 
exploitable side-channels the owner (or any other entities with access to the system) could use to infer 
information about the data or execution. Over the last few years, academic researchers have identified 
and demonstrated vulnerabilities in the design of certain TEEs that allow for side-channel attacks that were 
hitherto considered only theoretical. These mirror similar discoveries in other technologies such as TPMs 
and HSMs, as well as in other isolation or data protection mechanisms. These attacks have caused a lot of 
concern across the technology and security community.

5.3.2 Example

Here we give a simplified example from elliptic curve cryptography (ECC). ECC uses elliptic curve point 
multiplication to produce a one-way function. In ECC, multiplying a point P on a curve by n results in a new 
point on the curve, Q. ECC relies on the fact that it is intractable to determine n given both P and Q. A TEE 
might implement this multiplication using a ‘double-and-add’ method to calculate Q. In simplified terms, 
the method iterates through the binary representation of n one bit at a time and performs a doubling 
operation for each 0 bit and a doubling and addition operation for each 1 bit. 

Since the method is executed inside a TEE, data confidentiality is assured, meaning an attacker is not able 
to directly observe the data as it is being derived. However, an attacker may be able to use side-channels 
to determine the value of n. 

One side channel an attacker could potentially exploit if they have physical access to the machine is to 
accurately measure the power usage of the TEE CPU during method execution. For example, if the TEE CPU 
has a different power usage for addition compared with doubling, the attacker might be able to derive n 
from the power profile. Not all side channel attacks require physical access, some can be achieved from 
software by measuring the time taken to perform contrived operations.
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Figure 2 – Example of an attack using power values to infer information about data inside a TEE 

A combination of a doubling followed by an addition indicates a 1 for that bit. A doubling that is not 
followed by an addition represents a 0. Using this information an attacker can perform a full recovery of n. 

 Notice also that each bit with a value of 1 takes longer to process than a bit with a value of 0. A different 
side-channel attack could be performed where the attacker can determine the ratio of 0’s to 1’s in n by 
accurately measuring the time it takes for the method to execute, significantly reducing the complexity of 
recovering n using a subsequent brute force attack. 

Side-channels can allow attackers to infer information about data or operations inside a TEE by exploiting 
knowledge of the architecture of the TEE itself. The above example is relatively trivial but sophisticated attacks  
can be launched against TEEs using a combination of techniques that have been identified against existing TEEs.

5.3.3 Mitigation

A natural assumption is that TEEs themselves should provide the primary defense against side-channel 
attacks. However, preventing side channel attacks is collectively the responsibility of the TEE vendors, 
third-party vendors, and application developers. 

Referring back to the example above, the power and timing side-channel attacks can both be exploited 
due to the fact that the method processes 0 bits differently from 1 bits. What if the author of the method 
inserted a dummy addition operation for each 0 bit that is encountered? This would result in 0s and 1s 
having exactly the same power profile and taking the same time to execute. The attacker would have no 
useful side-channel information to exploit. 

Not all side-channel attacks and mitigations are as simple as the example above. Some side-channels are 
exposed as a result of algorithms in the application developer’s code or third-party libraries. Other side-
channels could be exposed due to the implementation of, for example, caching in the CPU hosting the TEE.

Writing code that will be run in a TEE requires a certain level of expertise and understanding of side-
channel mitigation techniques, whether that is provided by the application, compiler, SDK, or run-time 
environment. TEE manufacturers and third-party vendors supply tools and SDKs targeted specifically at 
secure TEE code generation. These can greatly reduce the risk of code authors introducing side-channels 
that can be exploited as well as providing a good level of defense against known vulnerabilities in the TEE.
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6 Attestation
Attestation is the process by which one party, called a “Verifier”, assesses the trustworthiness of a potentially  
untrusted peer, i.e., the “Attester”. (These terms are used consistent with the Internet Engineering Task 
Force’s “Remote Attestation Procedures Architecture”[4].) The goal of attestation is to allow the Verifier 
to gain confidence in the trustworthiness of the Attester by obtaining an authentic, accurate, and timely 
report about the software and data state of the Attester. 

6.1 Hardware-Based Attestation
Hardware-based attestation schemes rely on a trusted hardware component and associated firmware to execute 
attestation routines in a secure environment. As an example, an attestation protocol might work as follows:

1.	 A secure communication channel is established between the Verifier and the Attester;

2.	 After the secure connection is established, the Verifier generates a challenge and sends it to the Attester;

3.	 Upon receiving the challenge from the Verifier, the Attester kicks off the attestation process by sending 
the challenge to its trusted hardware component and requesting evidence of its software and data state;

4.	 The trusted hardware component gathers the evidence on the attesting platform and signs the 
attestation data and challenge;

5.	 The Attester returns the signed evidence to the Verifier;

6.	 The Verifier verifies the signature and appraises the evidence by applying some appraisal policy, such 
as comparing the attested platform state against a set of reference values that are deemed to be 
trustworthy, and verifying that the signed evidence includes the supplied challenge so that the Verifier 
knows the evidence was freshly generated. 

The above attestation process establishes the trustworthiness of the Attester and ensures that it was in an  
trusted state at the time that the evidence was generated. For a longer discussion including other variations, see [4].

Attestation protocol designs and implementations must also provide assurances around specific security 
properties, including:

•	 Unforgeability: Adversaries cannot produce a signature on a message that links to a trusted hardware 
component’s signature provided that the trusted hardware component never signed this message. 

•	 Revocation: If a trusted hardware component is compromised, signatures from compromised keys are 
no longer accepted.

Some attestation schemes also provide:

•	 Anonymity: Adversaries cannot reveal the identity of the trusted hardware component from signatures.
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6.2 Anonymity
In hardware-based attestation schemes, trusted hardware components can be uniquely identified by 
their cryptographic keys, which might allow an adversary to monitor the activity of a particular trusted 
hardware component.

One approach to addressing this requirement is adopted by Direct Anonymous Attestation (DAA) schemes 
(e.g., algorithms specified in ISO/IEC 11889:2015[5]), which attempt to tackle this privacy challenge by 
leveraging advanced cryptographic primitives such as zero-knowledge proofs and group signatures. In 
practice, the DAA schemes can be realized using a variety of cryptographic techniques, including RSA, 
Elliptic Curve Cryptography (ECC), Pairing-based Cryptography (PBC), or Lattice-based Cryptography (LBC). 

6.3 TCB Recovery
Trusted Computing Base (TCB) Recovery is the process of being able to re-establish the trustworthiness of 
a TEE should at some point a flaw in the TCB of the TEE be discovered that can be repaired. For example, 
the attestation process will result in a Verifier concluding that an Attester is not fully trustworthy if the signed  
evidence does not match the latest expected values for a secure system, resulting in the need for such repair.

The TCB of the TEE, typically including both immutable and mutable portions, provides the functionality of 
creating the evidence used in the attestation process. If a flaw is found in the TCB, then this process itself 
could be spoofed or subverted. TEE implementations may include special techniques to allow the mutable 
portions of the TCB to be updated, secured by the immutable portion. Any new attestation evidence 
created after the update then identifies and demonstrates that the update has taken place, in a manner 
that could not be spoofed by the previously flawed implementation.
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7 Conclusion
Confidential Computing, through the use of hardware-based, attested Trusted Execution Environments , 
protects sensitive data and code against an increasingly common class of threats occurring during data 
execution that were previously difficult, if not impossible, to protect against. For example, in classic security 
threat models, the owner or operator of a system is typically considered trusted, whereas Confidential 
Computing also allows for the protection of data against adversarial owners. 

Together with hardware-based attestation techniques, Confidential Computing can provide a strong level 
of assurance of data integrity, data confidentiality, and code integrity.  Even when other techniques such as 
TPMs or Homomorphic Encryption are used, adding Confidential Computing and hardware-based 
attestation can improve security by providing a level of assurance of data and code integrity. With these 
increased protections for data-in-use, new use cases become more realistic, e.g. multi-party computations 
in financial and/or regulated industries or machine learning at the edge, where the data being operated 
needs protecting from the processing environment owner itself.
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About the Confidential 
Computing Consortium

The Confidential Computing Consortium (CCC) is a community focused on projects securing data in 
use using hardware-based TEEs and accelerating the adoption of confidential computing through open 
collaboration. The CCC brings together hardware vendors, cloud providers, and software developers to 
accelerate the adoption of Trusted Execution Environment (TEE) technologies and standards. 

It is not the intent of this whitepaper, or the CCC, to evaluate or compare specific vendor technologies. This 
whitepaper aims to set context and define consistent terminology that vendors can use to describe their 
products, allowing others to make a like-to-like comparison between the various offerings in this space.

This content represents the collaborative work (“Work”) of the Confidential Computing Consortium (“CCC”). 
The CCC is solely responsible for the Work and Individual CCC members may not have contributed or 
participated or may not endorse it.
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